Semester 1 Review: Chapter 1

Key Concepts:	
1. Domain	2. Transformations
3. Discontinuity	4. Function Operations
5. Inverse Functions	6. Analyzing Functions
7. Piece-Wise Functions	8. Odd/Even Functions
9. Optimization	

1 Determine the domain of the following functions	
1. Determine the domain of the following functions $4\pi^2$	
a. $\frac{4x}{x^2 - 7x + 10}$	b. $\sqrt{8-x+3 x-12 }$
	21 2 1444
c. $\log(2x+8) + 4\sqrt{12} - 3x$	d. $\frac{3^{2}-2\sqrt{4x+16}}{6x^{2}-5x-6}$
	6x - 5x - 6
2 Transformations: W/rite the stone to transform the fi	unation from its parent function
a. $f(x) = \frac{1}{2}(-x+6)^2 - 5$	b. $g(x) = -\frac{3}{x-2} + 3$
$h(x) = \log^{2}(x) + 5$	$d y = 3\sin(\pi x - A)$
C. $n(x) = -\log(\frac{-x}{3}) + \frac{-1}{2}$	$y = 3\sin(nx - 4)$
e. $f(c) = -\frac{4}{2} \left \frac{1}{4}c + \right - 6$	f. $g(\theta) = 5 * 4^{3-6\theta} + 2$
3 4	

3. Discontinuity		
a. Explain what makes a function continuous.		
b Draw and label the three types of discontinuities		
b. Braw and laber the timee types of discontinuities		
c. List the types of discontinuities and where they	d. List the types of discontinuities and where the	
occur on the graph of:	occur on the graph of:	
$f(x) = \frac{x^2 - 16}{x^2 - 16}$	$q(x) = \begin{cases} x & \text{if } x < 2 \\ x & \text{if } x > 2 \end{cases}$	
$\int (x)^{2} - x^{2} + 3x - 4$	$(4 if x \ge 2)$	
4. Function Operations		
Use the functions below to perform the given operations:		
$f(x) = \sqrt{2x+3} \qquad \qquad g(x) =$	$h(x-3)^2$ $h(x) = \frac{1}{1-x^2}$	
	$n(x - 3)$ $n(x) - \frac{1}{5 - x}$	
a. $f(x) - h(x)$	$h_{x} = \frac{f(x)}{5 - x}$	
a. $f(x) - h(x)$	b. $\frac{f(x)}{h(x)}$	
a. $f(x) - h(x)$	b. $\frac{f(x)}{h(x)}$	
a. $f(x) - h(x)$	b. $\frac{f(x)}{h(x)}$	
a. $f(x) - h(x)$	b. $\frac{f(x)}{h(x)}$	
a. $f(x) - h(x)$	b. $\frac{f(x)}{h(x)}$	
a. $f(x) - h(x)$	b. $\frac{f(x)}{h(x)}$	
a. $f(x) - h(x)$	b. $\frac{f(x)}{h(x)}$	
a. $f(x) - h(x)$ c. $f(h(x))$	b. $\frac{f(x)}{h(x)}$ d. $f \circ g$	
a. $f(x) - h(x)$ c. $f(h(x))$	b. $\frac{f(x)}{h(x)}$ d. $f \circ g$	
a. $f(x) - h(x)$ c. $f(h(x))$	b. $\frac{f(x)}{h(x)}$ d. $f \circ g$	
a. $f(x) - h(x)$ c. $f(h(x))$	b. $\frac{f(x)}{h(x)}$ d. $f \circ g$	
a. $f(x) - h(x)$ c. $f(h(x))$	b. $\frac{f(x)}{h(x)}$ d. $f \circ g$	
a. $f(x) - h(x)$ c. $f(h(x))$	b. $\frac{f(x)}{h(x)}$ d. $f \circ g$	
a. $f(x) - h(x)$ c. $f(h(x))$	b. $\frac{f(x)}{h(x)}$ d. $f \circ g$	
a. $f(x) - h(x)$ c. $f(h(x))$ e. $g \circ f$	$h(x) = \frac{f(x)}{5 - x}$ b. $\frac{f(x)}{h(x)}$ d. $f \circ g$ f. $g(h(x))$	
a. $f(x) - h(x)$ c. $f(h(x))$ e. $g \circ f$	$h(x) = \frac{f(x)}{5 - x}$ b. $\frac{f(x)}{h(x)}$ d. $f \circ g$ f. $g(h(x))$	
a. $f(x) - h(x)$ c. $f(h(x))$ e. $g \circ f$	$h(x) = \frac{f(x)}{5 - x}$ b. $\frac{f(x)}{h(x)}$ d. $f \circ g$ f. $g(h(x))$	
a. $f(x) - h(x)$ c. $f(h(x))$ e. $g \circ f$	$h(x) = \frac{f(x)}{5 - x}$ b. $\frac{f(x)}{h(x)}$ d. $f \circ g$ f. $g(h(x))$	
a. $f(x) - h(x)$ c. $f(h(x))$ e. $g \circ f$	$h(x) = \frac{f(x)}{5 - x}$ b. $\frac{f(x)}{h(x)}$ d. $f \circ g$ f. $g(h(x))$	
a. $f(x) - h(x)$ c. $f(h(x))$ e. $g \circ f$	$h(x) = \frac{f(x)}{5 - x}$ b. $\frac{f(x)}{h(x)}$ d. $f \circ g$ f. $g(h(x))$	

9.	Uptimization:
a.	Luckily for you there is extra credit available. To raise your grade you will design a box for Mr. Hurni. He needs a box large enough to store all of his marbles so he doesn't lose them. He has lots of marbles and they take up $20 ft^3$. He would also like the height to be twice the width. However, since he is so very poor he needs you to minimize the amount of material used. Determine the dimensions of the box you will create for Mr. Hurni so he will have a safe place to store his marbles. Oh, and before you get too excited this is not an extra credit problem. You should just study really hard for the final.
b.	Karl needs help! Karl would like to build a fence for his pet turtle Timmy because Timmy likes to run away rom Karl. Karl came up with a great idea, he would like to build the fence next to the river so Timmy can get water when he gets thirsty, and that way he can use the river as one of the sides of his fence. Genius! Karl has enough money to buy 500 feet of fencing. Will you help Karl determine the dimensions of the fence so it will provide Timmy with the largest area to crawl around and do whatever turtles do. And while you're at it you should probably tell Karl that turtles can swim and the river won't stop Timmy from running away!