#1-4 True or False.

- 1. A function y = f(x) may have more than one y-value paired with each x-value. ____False_____
- 2. The graphs of a function and its inverse are symmetric with respect to the line y = x. ____True____
- 3. In a rational function, a common factor in the numerator and denominator create a vertical asymptote. __False____
- 4. Function composition is associative. _____False_____

#5-7 Give the domain, range and zeros of the following functions:

5.
$$f(x) = (x-1)^2 + 2$$

Domain: $(-\infty,\infty)$ Range: $[2,\infty)$

6.
$$f(t) = \sqrt{16 - t^2}$$

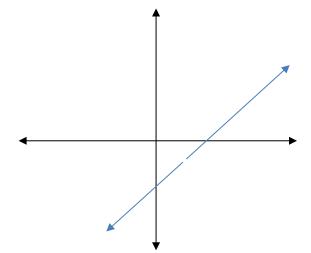
Domain:_____[-4,4]_______Range:______[0,4]_____

$$7. f(x) = \frac{\sqrt{x+1}}{x^2}$$

Domain: $[-1,0)\cup(0,\infty)$ Range: $[0,\infty)$

#8-9 **Let**
$$f(x) = \frac{x^2 - 5x + 6}{x - 2}$$

8. Sketch the graph of f(x).



9. Show all work for all critical points: Domain, range, intercepts, asymptotes, point discontinuity.

$$f(x) = \frac{x^2 - 5x + 6}{x - 2} = \frac{(x - 3)(x - 2)}{(x - 2)} = x - 3$$

P.D.@ x = 2 Domain: $(-\infty,2) \cup (2,\infty)$

Range: $(-\infty, -1) \cup (-1, \infty)$

x-int(3,0) y-int (0,-3)

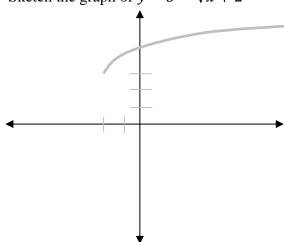
No V.A. No H.A.

#10-13 If f(x) = 5x and $g(x) = \frac{2-x}{x^2+3}$, evaluate the following:

10.
$$f(g(3))$$

12.
$$(f \circ g)(x) = \frac{10-5x}{x^2+3}$$

14. Sketch the graph of $y - 3 = \sqrt{x + 2}$



$$y = \sqrt{x+2} + 3$$

- #15-17 Let $h(x) = (x+2)^3$
- 15. Find a rule for $h^{-1}(x)$. _____ = $\sqrt[3]{x} 2$ _____

$$y = (x+2)^3$$

$$x = (y+2)^3$$

$$\sqrt[3]{x} = \sqrt[3]{(y+2)^3}$$

$$\sqrt[3]{x} = y+2$$

$$\sqrt[3]{x} - 2 = y$$

16. Use compositions to prove that h(x) and $h^{-1}(x)$ are inverses.

$$h(h^{-1}(x)) = ((\sqrt[3]{x} - 2) + 2)^{3}$$
$$= (\sqrt[3]{x})^{3}$$
$$= x$$

$$h^{-1}(h(x)) = \sqrt[3]{(x+2)^3} - 2$$

= $x + 2 - 2$
= x

17. Sketch the graphs of y = h(x) and $y = h^{-1}(x)$. Show $h^{-1}(x)$ as a dotted line.

